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ABSTRACT

This report is a description and a user guide for lhe FORTRAN
program LANSO.LANSOcomputes an approximate solution vector
for the system of linear equations A: = b, using the Lanczos tridi-
agonalization algorithm with selective orthogonalization. Here A is
a symmetric,real t'I.Xt'I.matrix and b is a liven n-vector. Since this
Idea is rather new the theoretial background for LANSOis dis-
cussed briee.y. The structure and the lubroutines of LANSOare dis-
cussed in detail, and a sample run of LANSOis given. The main
applications are to problems where the matrix A is large and
8parse,the cost of. the matrix vector product dominates other
costs, and/or the matrix is not explicitly available.

1. Introduction.

In many applications one encounters the intermediate task of computing a

solution vector % to the systen of linear equations

A:z:=b, (1.1)

where A is a symmetric t'I.xn matrix and b is an n-vector. If A is large and

sparse, there is an elegant way to exploit the sparsity by employing A only as a

linear operator which computes Av for any given vector v. There are several

methods known, which produce an approximate solution vector based only on

repeated computation of matrix vector products, e.g., the method of conjugate

gradients (CG) by Hestenes and Stiefel [1], the algorithm SYMM1Qby Paige and

Saunders [4], Lanczos' method of minimized iterations (LAN), and the Lanczos

algorithm with selective orthogonalization (LANSO)by Parlett [6].

All these methods have several attractive features in common. There are no

special properties needed for A, no acceleration parameters have to be

estimated, and the storage requirements are only a couple of n-vectors (e.g. 5
for
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the current implementation of LANSO) in addition to the demands of the opera-

torA.

In exact arithmetic (c.f. [4]) all these methods produce the same approxi-

mate solution at each step. However they do ditIer in the way this approximate

solution is computed. Since in practice the actual implementations of CG,

SYMMLQ,and LANare strongly affected by roundoff errors, the algorithms have

quite different properties. Because of roundoff certain vectors which are

orthogonal in exact arithmetic, cease to be so in ftnite precision artihmetic. But

this loss of orthogonality does not prevent the convergence of the mentioned

methods, it merely delays it. If however, the cost of a matrix vector multiplica-

tion dominates all other costs, then there is strong incentive to maintain a cer-

tain level of orthogonality and thus to keep t.he total number of calls on the

operator A to a minimum.

1

.
In the case of the LancEO! algorithm this goal is achieved through the tech-

nique of selective orthogonalization (SO), which was developed by Parlett and

Scott [7] for the eigenvalue problem. It amounts in storing the Lanczos vectors

at each step and maintaining orthogonality among them. The Lanczos vectors

are held in secondary storage. In order to maintain orthogonality and also to

assemble the tlnal solution they have to be recalled, in sequence, from time to

time. Therefore one has also to include the cost of I/O operations in order to get

an overall picture of the cost effectiveness of LANSO.

Another advantage of LANSOversus CG or SYMMLQis that it can deal

effectively with both deftnite and indetlnite systems.A is called indefinite if it has

positive and negative eigenvalues.

..

i
I
I

The implementation of the Lanczos algorithm with selective orthogonaliza-

tion documented in this report closely follows the algorithm proposed by Parlett

[6]. There is a certain overlap between this report and the paper by Parlett. A

user, who wants to know more details about the Lanczos algorithm and SO is

referred to the book [5] by Parlett. For a user, who wants to use the program

LANSOonly as a black box, it is sufficient to read section 3.1. and to consider

the sample run in the appendix.

The notation will be along the following conventions: small Greek letters for

8calars, small Roman letters for column vectors, capital Roman letters for

matrices.
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2. 'lbe Lanczos Algorithm with Selective Orth~onaIization for SoIYing Systems

of lJnear Equations.

This section 1rill provide a brief introduction into the theory behind LANSO.

Most of the computational details are omitted here and delegated to section 3.

2.1. 'lbe Lanczos Algorithm In bact Arithmetic.

Generally speaking at the j-th step J~'the Lanczos algorithm for lolving (1.1)

has computed an orthogonal basis for a certain j-dimensional lubspace of R"
and the projection of A onto this subspace. The approximate solution to (1.1) at

the j-th step is then the unique vector zJ in the j-dimensional subspace whose

residual b -,uJ is orthogonal to the lubspace. At the j+l-st Itep a new Tector is

added to the orthl)gonal basis. In this way the approximate solution is found

from a sequence of lubspaces of increasing dimension. At the latest. when j=n.

b -A:cnmust be zero in theory and z,. is therefore the actual solution of (1.1).

The subspace under consideration is the Krylov subspace J(i of Jlft defined

by

](i ;;; spa:n (b.Ab .A2b AS-lb) . (2.1.1)

Results of Kaniel [2] show that in important cases the residual norm

II b - AzS II becomes negligible for values of j much smaller than n. The Lanc-

zos algorithm is simply the application of Gram-Schmidt orthogonalization to

the vectors b ,Ab.A2b . . '. On the first glance this appears to be a lot of work,

but there are two facts. which make life easy and Lanczos worth doing.

Suppose at the j-th step an orthogonal basis of Lanczos vectors q l.q2 qS

for J(S has been computed. The qJ's form the columns of the ",xi matrix

QS= (q 1. . . qS)' Then the next task would be to orthogonalize ASb against

q 1 . . . qS' Nowsome short considerations (c.f. Parlett[ 5]) shl)w that it is only

necessary to orthogonalize Aqs against q 1 . . . qJ' Furthermore Aqshappens to
be already orthogonal to q l.q2,...qi-a. So Aqs has only to be orthogonalized

against qS-l and qs using

f's ;aAqs - qJaS - qS-lfls (2.1.2)

where as ;;; qjAqs. flJ == qj-lAqS' Note that ql.qa qS-2 are not needed in (2.1.2).

The core of a Lanczos step is therefore surprisingly simple. f'S still has to be nor-

malized to become QS+l'It turns out that 1If's II = flS+l'
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The special choice of the Krylov subspace ~ still gives another reward. Tj.

the projection of A onto ~ in terms of Qj is a tridiagonal matrix:

al (32 0
(32a2 (33

T. ~ QjAQ;=I: . R: ":-1 P;
J . ,...,-1 b "'.

. O""j V<.,

(2.1.3)

The key relationships between the quantities computed by the Lanczos algo-

rithm in exact arithmetic can be summarized in the three equations:

I. - n~Q. = 0, "tt" (2.1.4)

(2.1.5)
.

AQj - Qj Tj =Tjej

Q/Tj =0 (2.1.6)

Here ej(oT ep» is the j-th column of the jxj identity matrix lj' The algorithm

is started by setting qo == 0 and TO == b. It should be noted that the actual com-

putation of the quantities qj.CXj.(3jis done in a different order as in the above

representation (c.f. section 3.3 ).

The next question is of course how to get the approximate solution vector Xj

from the Krylov subspace ~. In terms of Qj and Tj)Xj can be characterized as
follows

Xj == Qj Tr1Q/b . (2.1.7)

-')

Equation (2.1. 7) says that Xj can be obtained by projecting the right hand side b

onto J<i. then solving in ~ the system Tj f j = Q/b ,where Tj is the projection of

A. and finally expressing f j in terms of the original space by forming Xj = Qjf j'

Note that Q/b = e P>(31.since q 1 = b I (31'

Jt'is not clear that Xj defined by (2.1. 7) is identical to the approximate solu-

tion defined at.the beginning of this section. i.e that Axj - b is orthogonal to J<i.

Using (2.1.4), (2.1.5), and (2.1.7) it follows that

Ax. - b = AQ. T:-1Q~ - b, J J ,

= (QjTj + Tje/)Tr1Qj~ - b

.r.-l Q
.
b=r.{Z.. .J , J J (2.1.8)

= Tjel1j-le I;) (31
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=Tj rpj

where rpj denotes the j-th component of the vector f j' Thus the residual Axj - b

is a scalar multiple of the vector Tj and by (2.1.6) indeed orthogonal to Kj.

By taking norms in (2.1.8) another key formula is obtained:

/lAxj - b II = IITjrpj 11.= pj+ll rpj I (2.1.9)

This shows that the norm of the j-th residual can be found without forming expJl-

citly Xj or lhe residual. It is not even necessary to compute f j at each step in

order to find rpj' The details are in section 3.5.

Contrary lo CG and SYMMLQit is not necessary to update an approximate

solution vector at each step. Only the scalar Pj :; Pj+ll rpjI has to be monitored.

Only when some Pj becomes sufficiently small does the j xj system Tjf j = e p>PI

have to be solved. At this point it should be mentioned that if A is indefinite the

Tj may have negative eigenvalues and we must take care in solving this system.

The details are explained in section 3.7 .

Finally the approximate solution Xj has to be computed. It is only here that

the Lanczos vectors ql,q2. . . . qj-2 are needed since Xj has to be assembled by

forming Xj = Qjfj.In the present implementation the Lanczos vectors are writ-

ten into' secondary storage as soon as they are computed and, at the end,

recalled one by one in order to form Xj'

2.2. Selective Orthogonalization.

A detailed account of the behaviour of the Lanczos algorithm in the pres-

ence of roundoff and of selective orthogonalization (SO) is available in Parlett

[5]. Therefore in this section only the basic facts about SO will be presented to

explain LANSO.

From now on l~t aj,Pj,qj etc. denote the corresponding quantities as they

are computed, not their ideal counterparts. Let f: be the roundoff unit. The basic

equations (2.1.4)-(2.1.6) are now perturbed by roundoff. Although for each j

(2.1.5) is only slightly perturbed. the relations (2.1.4) and (2.1.6) completely fail

after a certain number of steps depending on f: and on A. The Lanczos vectors,

which are orthogonal in exact arithmetic, not only loose their orthogonality. but

even become linearly dependent.

For a long time, as a remedy against this loss of orthogonality, it was sug-

gested to reorthogonalize each new qj against all previous Lanczos vectors,

--.,..
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which is of course very expensive. The results of Paige [3] give some better

insight in the way how orthogonality is lost, and provide the theoretical basis for

SO.

In order to explain Paige's results it is necessary to introduce certain quan-

tities which are not of direct interest when solving Ax =b. Let "\u> be the eigen-

values and sp> be the corresponding normalized eigenvectors of Tj

TjSP> =sP>"Ij) i =l ,j . (2.2.1)

From these one can compute the Ritz vectors yp> by

Y .u> =Q.s.u>
\ J \ (2.2.2)

These quantities change at each Lanczos step. If there is no confusion possible

the superscripts will be dropped. The pairs ("Ij),yP> ) i=l,...,j are approximate

eigenpairs of A. The quality of this approximation can be determined by consid-

ering the residual IIAYi - Yi"i II. Applying (2.2.2) one finds that, to within

roundoff,

IIAYi -Yi"ill ~ (3ji + IIFjl1 (2.2.3)

where (3ji ==(3j+1Sji and Sji ==e/si' Le.. the bottom element of the corresponding

eigenvector of Tj. The Pji play an important role in the process of SO.

Now everything is ready to state one of the most important consequences of

Paige's work, which can be summarized as follows: loss of orthogonality among

the Lanczos vectors is equivalent to the convergence of a Ritz pair. In other

words, if one of the Pji. becomes small, the corresponding Ritz pair converges to

an eigenpair of A and the Lanczos vector %+1 loses its orthogonality to ql,..qj-2'

But mt;)re is known about how qj+l behaves, it is tilted towards yp> while it is

retaining its previous level of orthogonality to all other YIeU>,k#- i. In order to

maintain a certain level of orthogonality it is therefore only necessary to orthog-

onalize the new Qj+l' or equivalently the unnormalized Tj against yp> when the

Pji become smaller than some threshold. So first compute T'j (compare 2.1.2)

by

T'j == AQj - qjCXj - qj-d3j (2.2.4)

as usual, then check if any Pji. is small. If so then compute the corresporlding

Vp> and orthogonalize r'i against it obtaining

Tj == T'j - yp>~\u> (2.2.5)
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where

tP) = yP).T'j/ IIyP) 112 (2.2.6)

This requires the formation of Yi. = QjSi.' The payoff for the expensive calc~lation

comes later when subsequent Lanczos vectors. say qj+15 and Qj+30need to be

orlhogonalized against Yi.. since a certain number m of Ritz vectors are also put

in secondary storage and need not to be formed again. The question of how many

Ritz vectors to keep. and whether to keep them in core in case the optimal

number is small is still under investigation.

Finally it should be mentioned that the threshold for which a {3ji.is con-

sidered to be small is set to be ..JEIITj II in the present version of LANSO. This

choice was based on thE computational experience for the eigenvalue problem

[7]. An analysis in [5] shows that this guarantees a certain level of orthogonality

among the Lanczos vectors. The remaining computational details are discussed
in section 3.6.

3. The linear Equation Solver !ANSO

The linear equation solver LANSOwas developed and tested on the DEC VAX

11/780 of the Computer Science Division of the EECS Department at the Univer-

sity of California at Berkeley. It is coded in FORTRAN.There exists only a double

precision version of the program. but it should be no problem to convert it to

single precision. Throughout this section all FORTRANvariables are assumed to

be of type DOUBLEPRECISIONunless otherwise mentioned.

3.1. Usage of !AN&>-The SUbroutine IANCDR

A prospective user who is not interested in further details has to do only

two thing s in order to compute an approximate solution vector for a system of

linear equations:
* provide a subroutine MATMULwhich accomplishes the matrix vector multi-

plication.

write a main program which calls the subroutine LANCDR*

An example is given in the appendix. The subroutine MATMULhas to be of the
form
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SUBROUTINE MATYUL(U,V,N)

DIMENSIONU(N).V(N) .

Upon calling this subroutine, MATYULhas to compute". + Au and write the

result in ".. This somewhat unusual form saves one n-vector storage (cf. section

3.3). There are no restrictions on the way Au is formed, which is one of the

advantages of the Lanczos algorithm.

The header for LANCDRis

B

x

SUBROUTINE LANCDR (B,X.WORK.FAC,ISPC,N,M,LMAX,NTQ,NTR.IRES)

is an array of dimension N, which contains the right hand side on input.

The value of B is changed on output.

is an array of dimension N, which contains an initial guess for the solu-

tion. If no initial guess is known, X has to be set to zero. On output X con-

tains the approximate solution vector.

FAC

WORK is an array of dimension ISPC,providing the necessary workspace.

JSPC

N

M

is a number between 0 and 1. It denotes the factor by which the user

wants to reduce the residual norm. After successful computation the

solution vector in X satisfies IIA% - b II~ FACIIb II.A word of caution

on the use of FAC. If for example LANCDRis called with FAC= 10'" and

successfully computes a solution vector in X, then this does not mean

that the result in X is correct to four digits. If for example the condition

number of A is 1011the computed solution might not have a single

correct digit.

is an integer, which denotes the dimension of the workarray WORK. At

least 3 n-vectors and 10 j-vectors workspace are needed. Therefore ISPC

has to be larger than 3N+ 10LMAX+1

is an integer, the dimension of the matrix A.

is an integer which roughly speaking, controls the amount of SO. (It is

the number of Ritz vectors kept in secondary storage.) If one sets M=O

no SO will take place. The numerical experience so far has shown that

M=6 or M=4 is a reasonable choice. M should be chosen larger, if it is

known that the matrix A has several (more than 6) well separated eigen-

TBlues at the end of its spectrum, or if a previous run of !.ANSOdid not

produce a good solution after a reasonable amount of time. The role of M
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is still being investigated. In a final version of the program it will be set

automatically.

LMAX is an integer which denotes the maximum number of Lanczos steps a

user is willing to take.

NTQ,NTR,are integers which denote the channel number of the I/O unit for Lanc-

zos vectors(NTQ) and Ritz vectors(NTR). It might be necessary to adjust

the I/O operations to the local system.

IRES is an integer. If IRES=O the required reduction of the residual norm was

achieved within LMAXLanczos steps.The solution in X is accurate within

the limitations mentioned above(see FAC). If IRES=l the program

exceeded LMAXLanczos steps. X still contains an approximate solution
vector.

Since the work on LANSO is not yet completed this parameter list will be

simplified in future.

The subroutine LANCDRonly partitons the workspace WORKand calls the

subroutine LANSOL,which is the core of the program.

3.2. The Subroutine LANSOL

The subroutine LANSOLhas lhe following structure (for the nolation see

chapter 2):

1. Initialization

set control parameters

2. Loop: for J s LMAXdo

2.1 Simple Lanczos step

2.2 Analyze Tj

2.3 Update residual norm Pj

2.4 Selective orthogonalization

2.5 Check: if Pi s TOLgo to 3.

3. Solve Tj/j = e If31

4. Assemble solution: Xj = Qj! j
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Presently LANSOLis in modular form. Almost all the above steps are seperate

subroutines. In a final version this concept may be dropped for efficiency.

In the initialization step the guess for the solution %, is used as follows: the

residual r == b - Axg is formed. Then only the system Axe = r is solved for the

correction %e' The Lanczos algorithm is initialized by q 4- 0 and (:3I4- Ilrll. The

vectors q and r correspond exactly to the % and rj in section 2.1. The tolerance
TaL is set to be

TOL = ma.x(FAC,t) II b II

3.3. Simple Lanczos Step - The Subroutine IANSUd

The subroutine LANSIMperforms a simple Lanczos step according to the

description in section 2.1. The followingalgorithm is used at the j-th step:

This somewhat peculiar form has two advantages: It uses only two n-vectors. and

it follows the form of the algorithm, which was recommanded by Paige [3] as

least susceptible for roundoff. At the end of a simple Lanczos step the newly

computed Lanczos vector q is written into secondary storage.

3.4. Analyze Tj - The Subroutine ANALZT

The purpose of this subroutine is to compute the eigenvalues of Tj and the

corresponding fJj;.'Presently a straight forward approach is used, i.e.. at each

step a subroutine TRIDQLis called, which performs the QIralgorithm for 1j and

computes all the eigenvalues of 1';. Then all the {:3fi are computed via the
corresponding eigenvectors using a simple recurrence. This is far from optimal

and an improved version of ANALZr is almost completed. This new version will

use a more sophisticated updating technique. where only the";. and {:3jiare com-

puled. which are of interest for SO.

r 4- r/ (3j

q 4- -q (3j

q 4-q+Ar

swap q and r.
aj 4-qr

r 4- r - q aj

fJj+I 4- Ilr II
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3.5. Updating the residualnormpj -The Subroutine UPRES.

In order to find the residual norm Pj ={3j+ll ({)jI. where ({)j is the bottom ele-

ment of the solution vector / j of the tridiagonal system of equations

Tj/j = e 1{31'theoretically one would have to solve this linear system at each

step. But as Tj differs from Tj-1 only by the last row and column this is not

necessary.

In UPRES at the j-th step the matrix Tj is implicitly premultiplied by a

scaled rotation matrix (cr. [5].pg.l00). designed to make the element in position

of the new {3j zero. Thus Tj is reduced to upper triangular form. but only impli-

citly. Only the effect of this operation on the last diagonal element and on the

bottom element of the right hand side is stored in the global variables DELTA

and GAMMA.Their ratio then yields ({)j'and DELTAand GAMMAas well as IT pro-

vide the necessary information for continuing the implicit reduction at the next

step. The scaled rotations were used, since for indefinite A an almost singular

Tj may occur and an ordinary LLT decomposition of Tj might either brake down

or produce erroneous results.

3.6. Selective Orthogonalization -The Subroutine SElDRT

SELORT will be desribed here on a general level. since the intrinsic details

would require more theoretical background than section 2.2 provides. There is a

basic distinction between Ritz values which have already converged and those

which have not, but might do so within the next few Lanczos steps. The former

are called good Ritz values. the latter are called bad Ritz values. The good Ritz

values are stored in GRIN, all Ritz values good and bad are also stored in RIT-

VAL.Initially, when no Ritz value has converged yet. GRIN is empty.

The first step in SELORTis to check whether any of the good Ritz values has

produced a small {3jiat the present Lanczos step. This is done by updating the

arrays TAU and OLDTAUaccording to a recursion formula in [6]. If any of the

TAU's gets small, this indicates a small {3jiand a SO has to be performed accord-

ing to (2.2.5) and (2.2.6). Such an SO is called of the first type.

The second step in SELORT is to check certain of the bad Ritz values for a

small {3ji' Which ones are to be checked is determined by the integers ICL and
JCR. The mechanism behind ICL and ICR is explained in [5] and [6]. If any of the

bad Ritz values really has converged.i.e.. has a small {3ji' a SO will be performed.

Then the converged Ritzvalue whichhas become good.willbe added to the good
Ritz values in GRITVand ICL and ICR are updated.
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For eachSO of the second type a new Ritz vector has to be computed.

These Ritz vectors are written into secondary storage and from then on associ-

ated with the good Ritz values. Therefore these Ritz vectors are already available

if a SO of the first type has to be performed. and do not have to be recomputed.

The maximum number of good Ritz values and vectors to be kept is determined

by the parameter M. After M Ritz vectors have been computed no more SO of the

second type takes place. sa's of the first type will be still performed.

The idea behind this mechanism is that certain Ritz values. usually

corresponding to the extreme eigenvalues of A. wiil force sa's very often. These

are also the ones which will converge first. It is therefore often necessary to

orthogonalize against the corresponding Ritz vectors and their expensive recom-

putation has to be avoided.

Finally it should be mentioned that each SO changes the elements of the

matrix Tj slightly. How SO affects the structure of Tj is again explained in [6].

These changes and their possible effects on Pi and the solution vector f j are

recorded in CHALF. CHBET, and CHF by calling the subroutine UPDATE.

3.7. Solving Tj f j = e 1(31-The subroutine TRISOL

The subroutine 'I'RISOLis a general purpose subroutine for solving ill condi-

tioned symmetric tridiagonal systems. As for UPRES, fast scaled rotations are

used. The subroutine has the additional feature that the elements of Tj are

unchanged. All information (the cotan of the angles of rotation) is stored in the

array COT.
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Appendi%

As a first example consider the matrix A = ( ~) where

\

4 ifi=;
~ = -1 ifi =;+1 . i =;-1 . i =;+15 . i =;-15

0 otherwise

The correct solution is % = (1.1, 1". the right hand side vector b is gen-
erated by calling matmul once. The dimension n= 100, and the other input
paramaters can be directly read oft from the following program listing:

1
2
3
4
5 c..
6 c..
7 c..
8
9
10
11
12
13
14
15
16
17
18 10
19
20
21
22 11
23
24
25
26
27
28
29
30
31
32 c..
33 c..
34 c..
35
36
37 20
38
39
40

program main
implicit double precision (a-h,o-z)
dimension b(100),x(100)
dimension work( 1100)

ini~ie.lizing data for lancdr

n=100
lmax= 60
ntq=8
ntr=9
m=6
ispc=1100
fac= 1.0d-6
do 10 i= l,n

x(i)= 1.OdD
b(i)=O.OdO

continue
call matmul(x.b,n)
do 11 i=I,n

x(i)=O.OdO
continue

write (6,9000)
write (6.9010) n
write (6,9011) Imax
write (6,9012) fac
write (6.9013) m
call1ancdr(b, x,work. fac ,ispc .n,m,lmax,ntq,ntr ,ires)
if (ires.eq.O) write (6,9005)
if (ires.eq.l) write (6,9007)
write (6.9004) (x(i) , i=l,n)

computing relative error

err=O.OdO
do 20 i=l,n

err= err+ (1. OdO-x(i» **2
err=dsqrt( err) /100. dO
write (6,9020) err
stop
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41 9000 format (I,3x," Solving Ax=b with the Lanczos algorithm ",I/)
42 9004 format ( d26.1B )
43 9005 format (I," residual norm became small, solution vector = ".//)
44 9007 format (I," maximum number of Lanczos steps exceeded, approx. solu
45 1tion vector = "./I )
46 9010 format (I," Number of Equations = ",i5./ )
47 9011 format (I," Max. Number of Lanczos Steps = ",i5./ )
4B 9012 format (I," Factor for reducing res.norm = ",d12.4./ )
49 9013 format (I," Wax. Number of Ritzvectors kept on tape = ",i4./ )
50 9020 format (I," ReI. Error in the solution = ",d12,4,./ )
51 end
52

53
54
55
56
57
5B
59
60 10
61
62
63
64
65
66 11
67
68

subroutine matmul (u,v,n)
implicit double precision (a-h,o-z)
dimension u(n),v(n)
nml=n-1
v( 1)=v( 1)+4.0dO*u(1 )-u(2)
do 10 i=2,nm 1

v(i)=v(i)+4.0dO*u(i)-u(i-1)-u(i+ 1)
continue

v(n)=v(n)+4. OdO*u(n)-u(nm 1)
nm15=n-15
do 11 i=1,nm15

v(i)=v(i)-u(i+ 15)
v(i+ 15)=v(i+ 15)-u(i)

continue
return
end

The subroutine matmul shows how the special form of this matrix can be
exploited. For this example no additional storage for the matrix A is necessary.
Here LANSO computes the approximate solution in 25 steps without performing
an selective orthogonalization.

As a second example a matrix M is considered, which is obtained from the
diagonal matrix A = d.ia.g (>'l,~, ,AI00) by a similarity transformation of the
form M = PAP. Here P is the reflector I - 2yruw., where the n -vector w was
chosen at random. M has the eigenvalues

!

10[i/3]+ 1, i = 1,...,90
~ = 1900 + i, i = 91 ,100 ,

where [i/3] is the largest integer not exceeding ~ . The matrix M is actually a
full matrix, but the special choice of the reflector P makes it possible to store it
in implicit form in only three arrays of dimension(100),(c.f.[5,pg.119]). Although
the matrix M is never explicitly computed, LANSO can solve solve Mx = b. As
before the solution vector is x = (1,...,lr, and the right hand side is computed
by calling matmul. The other parameters can be found direcUy in lhe program
listing:



1
2
3
4
5
6 Coo

7 Coo

B c..
9
10 1
11
12 2
13
14 3
15
16
17 4
16
13
20 5
21 coo

22 Coo

23 c..
24
25
26
27
26
29
30
31
32
33
34 10
35
36
37
36 11
39
40
41
42
43
44
45
46
47
46 c..
49 coo

50 coo

51
52
53 20
54

-3-

program main
implicit double precision (a-h,o-z)
dimension b(100),x(100)
dimension work(1100)
common /mat/ d(100),w(100),p(100)

Betting up data for matrix

do 1 i=l,90
d(i)= 10.0dO*d1loat(i!3)+ 1.0dO

do 2 i=91,100
d(i)= 1900.0dO+dtloat(i)

do 3 i=1,100
w(i)=runi(1.0dO)

gamma=2.0dO/dot(w, w,100)
do 4 i=l,lOO

p(iJ=gamma*d(i) *w(i)
delta=O.5dO*gamma *dol(w,p,100)
do 5 i=l,100

p(i)=p(i}-delta.w(i)

initializing data for lancdr

n= 100
lmax=60
nlq=6
nlr=9
m=6
ispc= 1100
fac= 1.0d-6
do 10 i= 1,n

x(i)=1.0dO
b(i)=O.OdO

continue
call matmul(x,b,n)
do 11 i=l,n

x(i)=O.OdO
continue

write (6,9000)
write (6,9010) n
wrile (6,9011) lmax
write (6,9012) fac
write (6,9013) m
call1ancdr(b, x,work, fac ,ispc,n, m,lmax,ntq,ntr .ires)
if (ires.eq.O) write (6,9005)
if (ires.eq.l) write (6,9007)
write (6,9004) (x(i) , i=l,n)

computing relative error

err=O.OdO
do 20 i= l.n

err=err+(1. OdO-x(i»u2
err=dsqrt(err)/100.dO



---

-4-

55 write (6,9020) err
56 stop
57 9000 format (I,3x," Solving Ax=b with the Lanczos algorithm ".!/)
58 9004 format ( d26.18 )
59 9005 format (I." residual norm became smell. solution vector = ".! /)
60 9007 format (I," maximum number of Lanczos steps exceeded, approx. solu
61 ltion vector = ".//)
62 9010 format (I," Number of Equations = ",i5.!)
63 9011 format (I," )lax. Number of Lanczos Steps = ",i5.! )
64 9012 format (I," Factor for reducing res. norm = ",d12.4,/ )
65 9013 format (I," Max. Number of Ritzvectors kept on t.ape = ",i4.! )
66 9020 format (I," ReI. Error in the solution = ",d12.4./ )
67 end
68

69
70
71
72
73
74
75
76 10
77
78

subroutine matmul (u,v,n)
implicit double precision (a-h,o-z)
dimension u(n),v(n)
common /mal/ d(100),w(100),p(100)
t.empl=dot(u,p,n)
temp2=dot(u,w,n)
do 10 i= 1,n

v(i)=v(i)+d(i) *u(i)-temp 1*w(i)-temp2*p(i)
relurn
end

LANSOtakes 37 steps to find the solution to the required accuracy.

f
I
l10

..

!



Max. Number of Ritxveotors kept on tape ~ 6

.11100000139690251620+01. JOo:)()OO 121214630900+01

. ~9~~19'.J7.lon-? 1222100+00.99'J99"Xi'J2J:J 15214840+00.99!J!)<)<J~i:n5l1784251 10+00.9!I'YJ9<J72S9 IS 1(19061 0+00.IuuuI,:;0;;u(;ti05264400 +0 I. 1OOOOOIJl.:JSS97587900 +0 I. IOOUOOOSJS6-1985 I 530 +0 I

.100110011':>27.151636970+01.9<)!J~)99S!)51 S6535.1700 +00

.99!)!J!19:-,0752U27-1864e+OO

.9'J'.I';9~7 Ir" ;:-:.1311'17300+00.9!Y)'J~0!17'J'J( 112999850 +00. IOtJ:II/()III.IS7-~OS51390+01.1Oil!IO(1;JI 'IS7'lm:51S60+0 I.!j<J!)')9<J97!.!}U 13( 100730 +00

.9')' )'J9'j7 I(it n-H31 m: 1ge +00.U<j'.:'J9'):.;(OS2( 127-19080 +00.9~)'1!J9!j:;!.JSI~GS354920 +00. IOOUOI,UZ!7 -IS 1637U20 +0 I. 101l1l0()OS3~;G 19:{5 1560 +0 I. II If)IJOc):)tC;:i~97S87960 +0 I. JOOII0!;OO:JG005264370+01.!,~)~)99972S91:H09OG le+OO.!.)'J!I!)!JS63JS078424670"00.!):)~J!')!')!;G!J:!:;J152148-10"00

. 9':.'J!,997-I0722 1222320..00. IOOI/OUO12 12 146SUS5e +0 I. JOOf)()(1l113!,6')U2515ge+01.WOOlII,O:!S2!17!J6S67!),,"0 I. 11100000 I'J[,S07876080"0 I
. ",I<)uOO(":0:,3("; 7?S I SUO"..O I.9!1!)'J99:~3'J.1:19S!J61100 +()O. l;nIU();)(JI~:75!:UI16.le"01
. 1,.1i 11111:) 1:-: 1(;')..j2-.IGU 1 e+O 1
.111I1I1001l3'7(12'J5703350"01.1d;; IIJUO..!:.:37U 1391 1 10..01. J(lflOI)O()fJH6~7n2S0290 +0 1
.!' -;,;<J~)<J7:;:~,I::;)76S I2!>o "UO
. 99!1<J<J!J5S-I-i:tS6048650 "00
. '. :'<;!I,)~~G~'S;6:;GY37,,+00
.9!;!:'J!i<J7s?a7S7S91940+00.9~)!J'J~9:;:::.I~I~7:?4728c +00.101'-IOl,J02:;S9J6:!:17 I 30..0 I. 1OUOOO03200129090260 +0 1
.lUonOO0291421857560+01
.1000000093943250400+01.9!1<.J9997 1:~4387A39000 "00
.<)!)<)<)<)J~~!JuU272250110+00
.9999999397457082660+00
.1000000059650662580+01
.1000000389022333600+01
.100001'11'1149469285060+01
.IUUUOOOI39891515210+01
.looAOOOO51595100000+01
.9999<)98484815115330+00
.1000000082497206480+01
.999999833306143926e+06

.1000000250578708010+01

.1~~0145065658400+01

.1000000200168117300+91

.99g999S265805493780+00

.9999997597740714730+00
.9999996370838174280+99

R.I. Error in the solutioa . .2536.-97

OUTPUT FOR EXAMPLE 1
== ====..=

Solvina Ax=b with the Lanozosalaorithm

Numbor of Equations. 100

Max. Numbor of Lanoxos Steps = 60

Factor f~r reducina res.norm = .1009.-05

rosidual aora booamo smatl, solution vootor .
.9999996370838174050+00
.9999997597740714510..00
.9999998265805492890+00
.1000000200168117330+01
.1000000145065658350+01
.1000000250578708010+01
.999999!>33J06 1439260+00
.1000000082497206480+01
.9999998-184815115110+00
.1000000051595100050+01
.1000000189391515210+91
.1000000149469285090+01
.1 000U0038902233354 0+0 1
.1000000059650662550+01
.9999999397457082440"00
.9999996590027224960+00
.999~J971843S7038770+00. tOOOOoo093943250350 +0 I. 100000029142 1857560 +0 I
.100OOO0320429090260+0t
.1000000289936237130+01
.9999998346487247280..00
.99999975~)757891940"OO
.9999994832266860590+00
.9999995544356049090+00
.9999997330857680830+00.10001l000068702S0230 +0 t. IOOUOU048370 139111 0 +0 1
. 100000£1371-)295703410 +0 I
.1000000181694245950+01
.100000UIII8758011560+01
.99<J9~9S39039896088c+00
. 100I.11IOOOS36725 18790 +0 I
. IO()UOOO 19G5U7S7603e +0 I
.lOOOU00352~796S67ge+01



Mal. Number of Ritz,eotors kept on tape =

6

.1000003231 1049G5Gle+OI

. IOO(JOO2SS30220G905e+O I

. IOO()OO2~7-1292G3G5 1e +0 I

. IOOUOo:>:,GJ 1~3.10945e +0 I

.9~!~19939:!G7;,75 15328,,+00

.99~993~GI558802291,,+00

.99' ),)9-100893-14 J I527e +00

.100000.j-l819701912ge+01
. IOOOOO-l:;9~;71208763" +0 I
. 10;1000.j2705..1673532" +0 I
. lOoOOOOG92 I-14972 I I" +0 I

. IOOO(KIOGO-19114.19~02e+OI

.I (loOOUO.12I,'IY670.oJ 12,,+01

.999999-1193~219-109ge+00

. IIJoOoueS077--17u8513e +0 I

. 1Of I;)UI12(,--I152592533e +0 1

. ~19(;'J90f.2?f'I<J2653S75e +00

. IOI:OIOOI-197~.1274357,,+01

. III!iOOO5103(>'JJ--I3G23e +0 1

. <J!I' ):}!N2 129-18 IG795Y" +00

. !n;'J9'J JC 1-192 185 1117e +00

. !19' ;')9:3 I3230522Y5-13c+00

. 99! !')9G7~;--I.IUS2914SS" +00

. ! !<J::')0GG'/25309G 1050c +00

. 9~)' 1~)!JG62<)3(;4000467c+OO

. JOd:JOlJ5 J 25~127763-12e +0 1

. IllIaJOOSJt>GG~75:~5'13c+01

. 1001 ;/)05 J 9~;S292877ge +0 I

. <)'.1')995 19\,35823-143ge +00

.~YJ'.\9!IS 1:.;OO5! "'48050+00

. ~j'J')'J~)<;1h675')2 120730 +00

. 101;;11 :03.?G~:S'J 192 1e8" +0 I

.lnUlIOI,3?711-1813153,,+01

. JlII;.JIII'~1.'772:~6:17-125e+OI

. 9')~.)~.I"2l,7\1.J23:17S!>2,,+OO

. 'J','.:')!J::2t,S2177S35.j6c +00

. ~)'i';'J!);2t):I('G'~313037c+00

.1I1i1ntJlJ071(;<j.J76'J6770+01

.1(;;,:/11:,0717:,;;)1>9<19090+01

. IIKIlI0::07 1857116762e+0 I

. <.-.,:'Y..i'J/CIIS.IISIJS[;34e+OO

. ~;':':~;~07GI):>:n.IS6SS6,,+00

. ~:'..';',;<)971>062(;095435c+00

. JO:IUI,OOOS7K?lII34240+01

.I O::lJiOO!10579796-'l558e+0 I

. W:;f)lJOOOSSI.?46IS23e+01

. 99~(J999864G 136 1767 c +00

. 9!)';<)9!J9S655~8889540 +00

.9')'J9999~G6.IS372508e +00

. 999~199999S07 1826 160 +00

.99'J'J999'J~~~G4-19453e+00

.99999999995975 1440e+00

.9'Jqq9999~3349S0167e+00

.999999998397753198e+00

.999999~H456186412e+00

. 'J :':.; ; .::'.':.(;;',1I6,llI732e+00

. ~)'.J'.:~;~')'J'it '..1:>'/ DO 16 I0+00

. ~J~I!J'X)9~)<J42IS2-1SS II 0+00

. lOo:iOOUiJOO 127360540 +0 I

. ~n )')')<Y'1'J:~.13S4287500 +00

. ~"J .,')'rJ'J'JSS-IS833S020 +00

. It"'. IIill!II)(JOlll-l882400 +0 I

.'J'J"J'J~<)J9G9!J7262 16" +00

. ';'; .')'J:I'J~)r.0;;9 I725600 +00

. ~)'J';<)<):1~19!JOU5"628140 +00

. ~."j~j'J!j!J999U35764087e+00

ReI. Error in the solution = .4023e-06

OUTPUT FOil £XMlrLE 2
~===~~=~~~~~~~==~=~=

Sol,ins AI=b with the Lanozos alaorithm

Number of Equations. 100

Mal. Number of Lanozos Steps a
60

Paotor for roduoins res.norm a
. 1900e-05

residual norm became small, solution ,octor a

.9999998639271 I 1488e+00

.9999998639209647160+00

.100000001900409702,,+01

.1000000018990-185240+01

.1000000018975684910+01

.9999999369224728210+00

.99999993690926027ge +00

.99999993689-1842612e+00

.10000002 I97-1542860e +0 I

.10000U02 1970864 120,,+01

.10000002 1966832375c +0I

.9999993255538 15988e +00

.9999993255869104260+00

.9999993256233727260+00

.1000001745373735600+01

.1000001745120404070+01

. 100000 I744839497 Ige +91

.9999962346382089250+90

.999996235222299767,,~00

.9999962358750809740+00

.I00000669363873743 e+0 I

.1000006691967942150+01

.1000U06690082391820+01

.99999035289823416ge+90

.9999903561376670910+00

.9999903598385567530+00

.1000010860697446190+01. 10000 1085482205890e +91
.1000010848003002000+01
.999991303205643-1230+00
.9999913102-171899240+00
.999991318592492884e+00.1000OO3'~4247106470e +0 I.100()t)032373SU9938ge+01


